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Abstract 

 

We compare density forecasts for the prices of Dow Jones 30 stocks, obtained from 

5-minute high-frequency returns and daily option prices. We use the Heston model 

which incorporates stochastic volatility to extract risk-neutral densities from option 

prices. From historical high-frequency returns, we use the HAR-RV model to 

calculate realized variances and lognormal price densities. We use a nonparametric 

transformation to transform risk-neutral densities into real-world densities and make 

comparisons based on log-likelihoods. The lognormal Black-Scholes model gives the 

highest log-likelihoods for all four horizons ranging from one day to one month, both 

before and after applying transformations. The HAR-RV model and the Heston model 

give similar log-likelihoods for all four horizons. 
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1. Introduction 

 

Density forecasts are of importance to central bankers, risk managers and other 

decision takers for activities such as policy-making, risk management and derivatives 

pricing. They can also be used to assess market beliefs about economic and political 

events when derived from option prices. 

 

Volatility forecasts produce forward-looking information about the volatility of the 

asset price in the future, while density forecasts are more sophisticated, as they 

provide information about the whole distribution of the asset’s future price. Since 

option prices reflect both historical and forward-looking information, volatility 

forecasters might rationally prefer implied volatilities from option prices to realized 

variance calculated from historical time series. We anticipate a similar preference 

could apply to density forecasts. There is a considerable literature comparing 

volatility forecasts obtained from option prices with volatility forecasts obtained from 

the history of asset prices. Blair et al. (2001), Jiang and Tian (2005), Giot and Laurent 

(2007) and Busch et al. (2011) state that option forecasts are more informative and 

accurate than historical forecasts of index volatility even when the historical 

information set includes high-frequency returns.1 Few studies, however, make similar 

comparisons for density forecasts. Liu et al. (2007), Shackleton et al. (2010) and Yun 

(2014) provide comparisons for UK and US stock indices, while Hog and Tsiaras 

(2010) focus on crude oil prices, and Ivanova and Gutierrez (2014) look at interest 

rates. These studies show option-based density forecasts outperform historical 

forecasts for a one-month horizon. There are no known previous results for individual 

                                                              
1 Further comparisons are in Poon and Granger (2003), Martens and Zein (2004) and Taylor et al. (2010). 
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stocks, so our contribution is to provide the first comparison for density forecasts 

obtained from option prices and historical intraday returns for individual stocks. 

 

Many methods have been proposed to obtain risk-neutral densities from option prices. 

Parametric methods include a lognormal mixture (Ritchey, 1990; Jondeau and 

Rockinger, 2000), a generalized beta distribution (Anagnou-Basioudis et al., 2005; 

Liu et al., 2007), and a lognormal-polynomial (Madan and Milne, 1994; Jondeau and 

Rockinger, 2000). Other approaches include discrete probabilities (Jackwerth and 

Rubinstein, 1996), a nonparametric kernel regression (Ait-Sahalia and Lo, 1998; 

Bates, 2000), and densities obtained from implied volatility splines (Bliss and 

Panigirtzoglou, 2002). All these methods, however, only provide densities for 

horizons which match option expiry dates. We instead fit a stochastic process, to 

obtain densities for all horizons. 

 

As the implied volatility smile effect indicates that risk-neutral densities are not 

lognormal and volatility is not constant, some studies use a stochastic process to 

model volatility. Heston (1993) assumes the volatility follows a mean-reverting 

square-root process and gives a closed form solution for option prices. We use 

Heston’s model in our study as its parameters can be calibrated from daily option 

records and it also has a tractable density formula based on inverting characteristic 

functions. Extensions of the Heston (1993) model are in Bates (1996) who also 

incorporates jumps, and in Duffie et al. (2000), Eraker (2004), Eraker et al. (2003) and 

Pan (2002) who include a jump process in both price and volatility components. 

However, we do not evaluate a jump component because Bakshi et al. (2003) and 

Shackleton et al. (2010) both find that adding jumps does not improve their empirical 
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results much. Furthermore, our nonparametric transformations can systematically 

improve mis-specified risk-neutral densities. 

 

We compare density forecasts derived from option prices using the Heston (1993) 

model and forecasts obtained from historical time series using the Corsi (2009) 

Heterogeneous Autoregressive model of Realized Variance (HAR-RV). However, the 

risk-neutral density is a suboptimal forecast of the future distribution of the asset price 

as there is no risk premium in the risk neutral world, while in reality investors are 

risk-averse. Hence we need to use economic models and/or econometric methods to 

transform risk-neutral densities into real-world 2  densities. Pricing kernel 

transformations include power and/or exponential utility functions (Bakshi et al., 2003; 

Bliss and Panigirtzoglou, 2004; Liu et al., 2007), and the hyperbolic absolute risk 

aversion (HARA) function (Kang and Kim, 2006). Liu et al. (2007) use both utility 

and statistical calibration transformations, and they show that statistical calibration 

gives a higher log-likelihood than a utility transformation. Shackleton et al. (2010) 

compare parametric and nonparametric transformations, obtaining good results for the 

latter. Hence we also transform the risk-neutral densities into real-world densities 

using a nonparametric transformation. 

 

Early studies including Bakshi et al. (2003), Bliss and Panigirtzoglou (2004) and 

Anagnou-Basioudis et al. (2005) use the full dataset to make risk-transformations. The 

real-world densities obtained are then ex post because each forecast is made using 

some information from later asset prices. However it is best to apply ex ante 

transformations as in Shackleton et al. (2010). Thus we only use past and present asset 

                                                              
2 Similar to Liu et al. (2007) and Shackleton et al. (2010), we use “real-world” rather than other alternative 
adjectives, such as “risk-adjusted”, “statistical”, “empirical”, “physical”, “true”, “subjective” and “objective”, etc., 
which are all used in the literature to indicate that the price distributions incorporate risk preferences. 
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and option prices to construct real-world densities. We investigate seventeen stocks 

from Dow Jones 30 Index for four horizons ranging from one day to one month for 

the period from 2003 to 2012. 

 

This paper is structured as follows. Section 2 describes the density forecasting 

methods, namely the Heston (1993) model for densities inferred from option prices, 

the Corsi (2009) HAR-RV model for density forecasts obtained from historical 

high-frequency stock prices and the nonparametric transformation of Shackleton et al. 

(2010). It also includes the econometric methods used to obtain ex-ante parameters 

and evaluate density forecasts. Section 3 describes the Dow Jones 30 stock and option 

prices data employed in the study. Section 4 focuses on the empirical analysis. Section 

5summarizes the findings and concludes. 

 

2. Methodology 

 

2.1 Option pricing with stochastic volatility 

 

We want to extract the risk-neutral density for the underlying asset from option prices, 

and a realistic process for an individual stock must incorporate a stochastic volatility 

component, whose increments are correlated with the price increments. We need to 

calculate an enormous number of theoretical option prices, so fast calculations are 

essential. The stochastic volatility process of Heston (1993) meets all our 

requirements as it has closed-form densities and option prices. 

 

The risk-neutral price dynamics for the stock price S, which incorporate the stochastic 
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variance V, is defined as below 

݀ܵ
ܵ
ൌ ሺݎ	 െ ݐሻ݀ݍ	 ൅ √ܸ݀ ଵܹ																																																ሺ1ሻ 

where r is the risk-free interest rate, ݍ is the dividend yield, and W1 is a Wiener 

process. For the variance, we have the familiar square-root process of Cox, Ingersoll 

and Ross (1985) written as 

ܸ݀ ൌ ߠሺߢ െ ܸሻ݀ݐ ൅ ܸ݀√ߪ ଶܹ																																														ሺ2ሻ 

We let ρ denote the correlation between the two Wiener processes ଵܹ and ଶܹ, while 

θ is the level towards which the stochastic variance V reverts, and κ denotes the rate of 

reversion of ܸ  towards θ. The volatility of volatility parameter ߪ  controls the 

kurtosis of the returns. More complicated affine jump-diffusion processes which have 

closed-form solutions are described by Duffie et al. (2000). We do not consider these, 

noting that Shackleton et al. (2010) obtained no benefits from including price jump in 

their study. 

 

Similar to the Black-Scholes formula, at time 0 the Heston call price formula is 

derived by assuming 

,ሺܵ଴ܥ ଴ܸ, 0ሻ ൌ ܵ଴ ଵܲ െ ,ሺ0ܲܭ ܶሻ ଶܲ.                  (3) 

The first term ܵ଴ is the current value of the spot price, while the second term 

,ሺ0ܲܭ ܶሻ is the present value of the strike price K. Each ௝ܲ in equation (3) is a 

conditional probability that the call option expires in-the-money. The term ଶܲ is 

derived from the characteristic function of ்ܵ under the risk-neutral measure ܳ, 

while ଵܲ is derived from the characteristic function of ்ܵ under a related measure 

ܳ∗ for different drift rates. 
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Probabilities are obtained from the conditional characteristic function of ݈݃݋ሺ்ܵሻ, 

which is denoted by ݃ሺߔሻ and defined for all real numbers Φ, with ݅ ൌ 	√െ1, as 

݃ሺߔሻ ൌ ,൫݁௜ః௟௢௚ሺௌ೅ሻหܵ଴ܧ	 ଴ܸ൯.                     (4) 

 

This is a complex-valued function. Heston (1993) solves the PDEs to get the 

characteristic function solution 

݃ሺߔሻ ൌ ݁	஼ା஽௏బା௜ః ௟௢௚ሺௌబሻ																																																			ሺ5ሻ 

 

When the asset pays continuous dividends, so q>0. S0 is replaced by S0e
-qT in (3) and 

(5). For options on futures, q=r. Each desired probability can be obtained by inverting 

the characteristic function, which is given as 

ܲሺ்ܵ ൒ ,଴ܵ	|	ܭ ଴ܸሻ ൌ 	
1
2
൅	
1
ߨ
න ܴ݁	 ቈ

݁ି௜ః ௟௢௚ሺ௄ሻ	݃ሺߔሻ
ߔ݅

቉ ሺ6ሻ																			ߔ݀
ஶ

଴
 

where ܴ݁ሾ. ሿ is the real part of a complex number (Kendall et al. 1987). This integral 

can be evaluated rapidly and accurately by numerical methods. It also provides the 

conditional cumulative distribution function of ்ܵ, therefore 

ሻݕሺܨ 	ൌ ܲሺ்ܵ ൑ ,଴ܵ	|	ݕ ଴ܸሻ ൌ 1 െ ܲሺ݈݃݋ሺ்ܵሻ ൒ ሻݕሺ݃݋݈ |	ܵ଴, ଴ܸሻ.	 

 

From routine calculations, the conditional risk-neutral density for positive values of y 

is hence 

݂ሺݕሻ 	ൌ 	
ܨ݀
ݕ݀

ൌ 	
1
ݕߨ

	න ܴ݁	ൣ݁ି௜ః ௟௢௚ሺ௬ሻ݃ሺߔሻ൧݀ߔ.																										
ஶ

଴
		ሺ7ሻ 

 

2.2 High-frequency HAR methods 

 

The HAR-RV model of Corsi (2009) is a simple AR-type model for the realized 
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volatility which combines different volatility components calculated over different 

time horizons. The HAR-RV model states that the multiperiod realized variance is the 

average of the corresponding one-period measures denoted as 

ܴ ௧ܸ,௧ା௛ ൌ ݄ିଵሾܴ ௧ܸାଵ ൅ ܴ ௧ܸାଶ ൅ ⋯൅ ܴ ௧ܸା௛ሿ																																		ሺ8ሻ 

 

where h=1, 2, …, by definition ܴ ௧ܸ,௧ା௛ ≡ ܴ ௧ܸା௛  and we use h=5 and h=22 to 

represent the weekly and monthly realized volatility. Here the time period for 

predictions is from t to t+h, both counting trading days. In contrast, our options 

notation is a time period from 0 to T, both measured in years. 

 

The HAR-RV model of Corsi (2009) is stated as a regression of the next RV on 

today’s RV and the average RVs over the latest week and month: 

ܴ ௧ܸାଵ ൌ ଴ߚ ൅ ஽ܴߚ ௧ܸ ൅ ௐܴߚ ௧ܸିହ,௧ ൅ ெܴߚ ௧ܸିଶଶ,௧ ൅  .௧ାଵߝ

 

To make predictions for the next h-day period, the regression specification is simply: 

ܴ ௧ܸ,௧ା௛ ൌ ଴,௛ߚ ൅ ஽,௛ܴߚ ௧ܸ ൅ ௐ,௛ܴߚ ௧ܸିହ,௧ ൅ ெ,௛ܴߚ ௧ܸିଶଶ,௧ ൅  ሺ9ሻ							௧,௧ା௛.ߝ

 

Some volatility forecast models also employ standard deviations as opposed to 

variances. Andersen et al. (2007) present the standard deviation form of HAR-RV 

model as 

ሺܴ ௧ܸ,௧ା௛ሻଵ/ଶ ൌ ଴,௛ߚ ൅ ஽,௛ܴߚ ௧ܸ
ଵ/ଶ ൅ ௐ,௛ሺܴߚ ௧ܸିହ,௧ሻଵ/ଶ ൅ ெ,௛ሺܴߚ ௧ܸିଶଶ,௧ሻଵ/ଶ 				

൅  ሺ10ሻ																																																																																																										௧,௧ା௛ߝ

 

Given the logarithmic daily realized volatilities are approximately unconditionally 

normally distributed, Andersen et al. (2007) also predict the realized variance in 
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logarithmic form as 

൫ܴ݃݋݈ ௧ܸ,௧ା௛൯ ൌ ଴,௛ߚ ൅ ஽,௛ߚ ሺܴ݃݋݈ ௧ܸሻ ൅ ௐ,௛ߚ ൫ܴ݃݋݈ ௧ܸିହ,௧൯ ൅ ெ,௛ߚ ൫ܴ݃݋݈ ௧ܸିଶଶ,௧൯

൅  ሺ11ሻ																																																																																																									௧,௧ା௛ߝ

 

We also use the logarithmic form of realized variance in our study. However, Pong et 

al. (2004) state that we cannot simply take the exponential of a forecast of logarithmic 

volatility to get a forecast of the variance, as the forecasts obtained will be biased. We 

thus follow Granger and Newbold (1976) to get the volatility forecast. In their 

notation, 

௡ା௛ݔ ൌ ௡݂ା௛ ൅ ݁௡ା௛
ሺ௫ሻ 																																																					ሺ12ሻ 

where ݁௡ା௛
ሺ௫ሻ  is the h-step forecast error of ݔ௡ା௛ and ௡݂ା௛ is the optimal forecast of 

௡ܫ ௡ା௛ made at time n. Usingݔ ൌ ሼݔ௡ି௝, ݆ ൒ 0ሽ, we define ܵଶሺ݄ሻ to be the variance 

of the h-step forecast error of ݔ௡ା௛: 

ܵଶሺ݄ሻ ൌ ቀ݁௡ା௛ݎܽݒ
ሺ௫ሻ ቁ.																																																			ሺ13ሻ 

The optimal forecast of ݁݌ݔሺݔ௡ା௛ሻ using ܫ௡ is then given by 

݃௡ା௛
ሺ௫ሻ ൌ expቆ ௡݂ା௛ ൅

1
2
ܵଶሺ݄ሻቇ																																								ሺ14ሻ 

assuming ሼݔ௡ሽ is a Gaussian process. This is a standard assumption for ݈݃݋ሺܴ ௧ܸሻ. 

 

2.3 Lognormal densities, from the Black-Scholes model and HAR-RV forecasts 

 

In the Black-Scholes model, we assume the prices follow geometric Brownian motion 

݀ܵ ܵ⁄ ൌ μ݀ݐ ൅  ሺ15ሻ																																																					ܹ݀ߪ

where µ is the expected return per annum, and is equal to the risk free rate plus the 

asset’s risk premium and minus the dividend yield. 



10 
 

 

Since the distribution of stock price ST is then lognormal, the distribution of log(ST) is 

normal: 

ሺܵ଴ሻ	݃݋ሺ்ܵሻ~ܰሺ݈	݃݋݈ ൅ μܶ െ
1
2
,ଶܶߪ  ଶܶሻߪ

 

Under the risk-neutral or the Q-distribution, the risk-neutrality assumption requires a 

drift rate r-q instead of µ, and hence we have 

log	ሺ்ܵሻ~ܰሺlogሺܵ଴ሻ ൅ ሺݎ െ ሻܶݍ െ
1
2
,ଶܶߪ  ଶܶሻߪ

and																																															ܧொሾ்ܵሿ ൌ ܵ଴݁
ሺ௥ି௤ሻ் ൌ  ሺ16ሻ																																																ܨ

where F is the no-arbitrage, futures price for time T. 

 

The risk-neutral density of ST then depends on three parameters (F, σ, T) and is given 

by the lognormal density 

߰ሺܨ|ݔ, ,ߪ ܶሻ ൌ
1

ܶߨ2√ߪݔ
݁
ିଵଶቆ

೗೚೒ሺೣሻషቂ೗೚೒ሺಷሻష
భ
మ഑

మ೅ቃ

഑√೅
ቇ

మ

.																								ሺ17ሻ 

 

Similarly, a risk-neutral, lognormal density from the HAR-RV model can be given by 

replacing ߪ√ܶ by a term ܴ෢்ܸ to give: 

߰൫ݔหܨ, ܴ෢ܸ௧,௧ା௛൯ ൌ
1

෢ܸ௧,௧ା௛ܴߨට2ݔ

݁
ିଵଶቌ

೗೚೒ሺೣሻషቂ೗೚೒ሺಷሻష
భ
మೃೇ
෢ ೟,೟శ೓ቃ

ටೃೇ෢ ೟,೟శ೓

ቍ

మ

																	ሺ18ሻ 

The quantity ܴ෢ܸ௧,௧ା௛  is calculated from (5.18) and (5.21) with the horizon h 

(measured in trading days) and maturity T (measured in years). 
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2.4 Nonparametric transformations 

 

The risk-neutral, Q-densities are not satisfactory specifications of the real-world 

densities. One reason is that Q-variance obtained from option prices is usually higher 

than the real-world variance, because there is a negative volatility risk premium (Carr 

and Wu, 2009). Consequently there are fewer observations than predicted in the tails 

of the Q-densities. A second reason is that the equity risk premium is, by definition, 

absent from all the risk-neutral densities. Hence it is necessary to use some technique 

to transform risk-neutral densities into real-world densities. 

 

We consider the nonparametric calibration method in this study. Nonparametric 

calibration functions are re-estimated for each period t. At time t (which counts 

trading days), the nonparametric transformation for a selected horizon h is determined 

by a set of t-h+1 cumulative, risk-neutral probabilities 

௦ା௛ݑ ൌ ,௦ሻ߆|௦ା௛݌ொ,௦,்ሺܨ 0 ൑ ݏ ൑ ݐ െ ݄,																													ሺ19ሻ 

with T (years) matching h (trading days), s a time before t-h+1, FQ, s, T the cumulative 

distribution function of the price ps+h, and with Θs a vector of density parameters. We 

assume the observations us+1 are i.i.d. and their c.d.f. is given by the calibration 

function CT(u). 

 

The values of the variables u for the Heston model are given by (6). The variables u 

for the HAR-RV model can be derived in the following way. For the risk-neutral 

dynamics, 

௦,௦ା௛൯ܨ൫݃݋௦ା௛ሻ~ܰሺ݈݌ሺ݃݋݈ െ
1
2
ܴ෢ܸ௦,௦ା௛, ܴ෢ܸ௦,௦ା௛ሻ 

with Fs, s+h the futures price at time s for a transaction at time s+h and with ܴ෢ܸ௦,௦ା௛ 
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the forecast of RV for the period from time s to s+h inclusive. From the outcome 

 ௦ା௛ we calculatê݌

௦ା௛ݑ																													 ൌ  ௦ሻ߆|௦ା௛̂݌ொ,௦,்ሺܨ

ൌ ߔ

ۉ

ۇ
෤௦ା௛ሻ݌ሺ	݃݋݈ െ ሺ݈݃݋	ሺܨ௦,௦ା௛ሻ െ

1
2ܴ
෢ܸ௦,௦ା௛ሻ

ටܴ෢ܸ௦,௦ା௛ ی

 ሺ20ሻ																				.ۊ

 

The values of the variables u for the Black-Scholes model are given in a similar way3 

௦ା௛ݑ ൌ ቌߔ
෤௦ା௛ሻ݌ሺ	݃݋݈ െ ሺ݈݃݋ሺܨ෨௦,௦ା௛ሻ െ

1
ߪ2

ଶܶሻ

ܶ√ߪ
ቍ																										ሺ21ሻ 

 

We use φ() and Φ() to represent the density and the c.d.f. of the standard normal 

distribution. We then transform the observations ui, whose domain is from 0 to 1, to 

new variables yi=Φ
-1(ui), and then fit a nonparametric kernel c.d.f. to the set {y1, y2, …, 

yt-h+1}. We use a normal kernel with bandwidth B to obtain the kernel density and 

c.d.f.: 

෠݄
்ሺݕሻ ൌ

1
ሺݐ െ ݄ ൅ 1ሻܤ

෍ ߮

௧ି௛ାଵ

௜ୀଵ

ቀ
ݕ െ ௜ݕ
ܤ

ቁ, 

ሻݕ෡்ሺܪ ൌ
1

ݐ െ ݄ ൅ 1
෍ ߔ

௧ି௛ାଵ

௜ୀଵ

ቀ
ݕ െ ௜ݕ
ܤ

ቁ.																																		ሺ22ሻ 

The bandwidth B decreases as t increases. We apply the standard formula of 

Silverman (1986), where B=0.9σy/t
0.2 and σy is the standard deviation of the terms yi. 

 

The empirical calibration function is then 

                                                              
3 When calculating densities and u variables, we use forward prices evaluated on the day of forecast, and calculate 
for four horizons, i.e. one day, one week, two weeks and one month. 
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ሻݑመ்ሺܥ ൌ  ሺ23ሻ																																																		ሻ൯ݑଵሺିߔ෡்൫ܪ

 

which is calculated at time t. At the same time, we let fQ,T(x) and FQ,T(x) denote the 

risk-neutral density and the cumulative distribution function of the random variable 

்ݑ We define .்݌ ൌ  ሻ. We follow Bunn (1984) and denote the calibration்݌ொ,்ሺܨ

function CT(u), which is the real-world c.d.f. of the random variable ்ݑ. Now we 

consider the real world c.d.f. of ்݌, with Pr referring to the real world probabilities. 

The c.d.f. is 

்݌ሺݎܲ ൑ ሻݔ ൌ ݎܲ ቀܨொ,்ሺ்݌ሻ ൑ ሻቁݔொ,்ሺܨ ൌ ݎܲ ቀ்ݑ ൑ ሻቁݔொ,்ሺܨ ൌ ்ܥ ቀܨொ,்ሺݔሻቁ		ሺ24ሻ 

 

Consequently replacing ்ܥሺ. ሻ by ܥመ்ሺ. ሻ, the predictive real-world c.d.f. of ்݌ is 

ሻݔ௉,்ሺܨ ൌ መ்ܥ ቀܨொ,்ሺݔሻቁ																																														ሺ25ሻ 

 

The real-world density is 

௉݂,்ሺݔሻ ൌ
݀
ݔ݀

෡்ܪ ൬ିߔଵ ቀܨொ,்ሺݔሻቁ൰ ൌ
݀
ݔ݀

ሻݕ෡்ሺܪ ൌ
ݕ݀
ݔ݀

ሻݕ෡்ሺܪ݀
ݕ݀

 

ൌ
ݑ݀
ݔ݀

ݕ݀
ݑ݀

෠݄
்ሺݕሻ ൌ

ொ݂,்ሺݔሻ ෠்݄ሺݕሻ
߮ሺݕሻ

.																																						ሺ26ሻ 

 

Also the nonparametric calibration density is 

்ܿ̂ሺݑሻ ൌ
݀
ݑ݀

ሻݑመ்ሺܥ ൌ
݀
ݑ݀

ሻݕ෡்ሺܪ ൌ
ሻݕ෡்ሺܪ݀
ݕ݀

ݕ݀
ݑ݀

ൌ
෠݄
்ሺݕሻ

߮ሺݕሻ
.																ሺ27ሻ 

 

2.5 Parameter estimation 
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The densities are all evaluated out-of-sample and thus the parameter values are 

obtained ex ante, i.e. the values at time t are estimated based on the information 

available at time t. For the HAR variances we estimate all parameters from 

regressions over five-year windows. For Black-Scholes lognormal densities, we use 

the nearest-the-money, nearest-to-expiry option implied volatility. 

 

For the Heston model, we estimate the risk-neutral parameters of the asset price 

dynamics every day. On each day, we estimate the initial variance Vt, the rate of 

reversion κt, the unconditional expectation of stochastic variance θt, the volatility of 

volatility σt, and the correlation ρt between the two Wiener processes. Assume there 

are Nt European, call4 option contracts traded on day t, denoted by i=1, …, Nt, and the 

market prices are ct, i, for strike prices Kt, i, and expiry times Tt,i. We also assume pt,i is 

the futures price for the asset, calculated for a synthetic futures contract which expires 

in Tt,i years. Then we calibrate the five risk-neutral Heston parameters by minimizing 

the total squared errors in 

෍ሺܿ௧,௜ െ ܿ൫݌௧,௜, ,௧,௜ܭ ௧ܶ,௜ , ௧ܸ , ,௧ߢ ,௧ߠ ,௧ߪ ௧൯ሻଶߩ
ே೟

௜ୀଵ

																												ሺ28ሻ 

with c(.) the solution for the European call option price from the Heston model given 

in (3).5 

 

2.6 Econometric methods 

 

2.6.1 Maximum log-likelihood 

                                                              
4 We use put-call parity to obtain the equivalent European call prices from the put prices, and then apply them to 
(5.5), this is also discussed in section 4.1.2. 
5 Christoffersen and Jacobs (2004) conclude that it is a “good general-purpose loss function in option valuation 
applications”. Christoffersen et al. (2006) also employed it in the study of S&P 500 dynamics. 
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There are several ways to evaluate density forecasts, and we will use the standard 

log-likelihood criterion previously employed by Bao et. al (2007), Liu et. al (2007) 

and Shackleton et al. (2010). For a given horizon h, assuming method m gives 

densities fm,t(x) at times i, .., j for the asset price at times i+h, …, j+h. Our goal is to 

find the method which maximizes the out-of-sample log-likelihood of observed asset 

prices, and this log-likelihood for method m is given by 

௠ܮ ൌ෍݈݃݋ ቀ ௠݂,௧ሺ݌௧ା௛ሻቁ

௝

௧ୀ௜

																																											ሺ29ሻ 

 

To compare two methods we apply a version of the log-likelihood ratio test in 

Amisano and Giacomini (2007). The null hypothesis states that two different density 

forecasting methods m and n have equal expected log-likelihood. The test is based on 

the log-likelihood differences 

݀௧ ൌ ݃݋݈ ቀ ௠݂,௧ሺ݌௧ା௛ሻቁ െ ݃݋݈ ቀ ௡݂,௧ሺ݌௧ା௛ሻቁ , ݅ ൑ ݐ ൑ ݆.																							ሺ30ሻ 

 

Amisano and Giacomini (2007) follow Diebold and Mariano (1995) and add the 

assumption that the differences are uncorrelated. Hence the AG test statistic is 

௜,௝ݐ ൌ
݀̅

ௗݏ ඥሺ݆ െ ݅ ൅ 1ሻ⁄
ൌ

௠ܮ െ ௡ܮ
ௗඥሺ݆ݏ െ ݅ ൅ 1ሻ

																																		ሺ31ሻ 

 

This statistic follows a standard normal distribution, where ݀̅ is the mean and ݏௗ is 

the standard deviation of the terms ݀௧. 

 

When h>1 the forecasts overlap and it is plausible to expect some autocorrelation in 

the differences. A Newey-West adjustment should then be made when estimating the 
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variance of ݀̅. Assuming the terms ݀௧ are stationary, 

൫݀̅൯ݎܽݒ ൌ ݎܽݒ ൬
݀ଵ ൅ ݀ଶ ൅ ⋯൅ ݀௡

݊
൰ 

ൌ
1
݊ଶ
ሾ݊ݎܽݒሺ݀ଵሻ ൅ 2ሺ݊ െ 1ሻܿݒ݋ሺ݀ଵ, ݀ଶሻ ൅ ⋯൅ ,ሺ݀ଵݒ݋2ܿ ݀௡ሻሿ 

					ൌ
ሺ݀ଵሻݎܽݒ

݊
൤1 ൅ 2 ൬

݊ െ 1
݊

൰ ଵߩ ൅ 2 ൬
݊ െ 2
݊

൰ ଶߩ ൅⋯൅ 2 ൬
1
݊
൰  ௡ିଵ൨ߩ

 

where the autocorrelations are ߩఛ ൌ ,ሺ݀௧ݎ݋ܿ ݀௧ାఛሻ . The typical estimate of the 

variance of ݀̅ is 

ௗݏ
ଶ

݊
ሾ1 ൅ 2߱ଵߩොଵ ൅ ⋯൅ 2߱௞ߩො௞ሿ 

 

and a standard set of weights for k estimated autocorrelations is ߱ఛ ൌ
௞ାଵିఛ

௞ାଵ
, 

1 ൑ ߬ ൑ ݇. 

 

2.6.2 Diagnostic tests 

Appropriate diagnostic tests use properties of time series derived from density 

forecasts. Rosenblatt (1952) introduces the probability integral transform (PIT), and 

states that the PIT values are i.i.d. uniform for known densities. Diebold et al. (1998) 

initiated the idea of using PIT values to evaluate density forecasts. Following this and 

Shackleton et al. (2010), we also employ a series of observed cumulative probabilities 

to check the accuracy of the forecasts. For a given method m the PIT probabilities are 

given by 

௧ାଵݑ ൌ න ௠݂,௧ሺݔሻ݀ݔ,
௣೟శభ

଴
																																															ሺ32ሻ 

for prices pt+1 matched with densities fm,t(x). 
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We then evaluate if the values of u are compatible with i.i.d. observations from the 

uniform distribution. We can employ the Kolmogorov and Smirnov test. The KS test 

checks the maximum difference between the empirical and theoretical cumulative 

functions. For forecasts made at times ݅ ൑ ݐ ൑ ݆, the sample c.d.f. of {ui+1, …, uj+1}, 

evaluated at u, is the proportion of values less than or equal to u, i.e. 

ሻݑሚሺܥ ൌ
1

݆ െ ݅ ൅ 1
෍ ܵሺݑ െ ௧ሻݑ

௝ାଵ

௧ୀ௜ାଵ

																																						ሺ33ሻ 

with S(x)=1 if ݔ ൒ 0, and S(x)=0 if ݔ ൏ 0. The test statistic is given by 

ܵܭ ൌ ݌ݑݏ
଴ஸ௨ஸଵ

หܥሚሺݑሻ െ  ሺ34ሻ																																																			ห.ݑ

 

The KS test is widely applied because it is easy to implement. However, one needs to 

be cautious when interpreting the test results, as the KS test checks for uniformity 

under the i.i.d. assumption rather than tests i.i.d. and uniformity jointly. 

 

Some researchers doubt the power of the KS test when evaluating density forecasts. 

Berkowitz (2001) invented the BK test, which states that if the PIT is i.i.d. uniform, 

then the normal inverse cumulative function of the PIT is i.i.d. normal. The advantage 

of the BK test is that it can test independence and uniformity jointly. The BK test has 

been applied in Clements and Smith (2000), Clements (2004), Guidolin and 

Timmermann (2005) and Shackleton et al. (2010),. 

 

The BK method transforms the observations ui to new variables yi=Φ
-1(ui), with Φ() 

the c.d.f. of the standard normal distribution. The null hypothesis of the test is that the 

values of y are i.i.d. and follow a standard normal distribution, against the alternative 
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hypothesis that y is a stationary, Gaussian, AR(1) process with no restrictions on the 

mean, variance and autoregressive parameters. Let 

௧ݕ െ ߤ ൌ ௧ିଵݕሺߩ െ ሻߤ ൅ 	ሺ35ሻ																																																		௧.ߝ

 

Then the null hypothesis is that ߤ ൌ ߩ ,0 ൌ 0, and ݎܽݒሺߝ௧ሻ ൌ 1. The log-likelihood 

for T observations from (35) is 

െ
ܶ
2
ሻߨሺ2݃݋݈ െ

1
2
ଶߪሾ݃݋݈ ሺ1 െ ⁄ଶሻߩ ሿ െ

ሺݕଵ െ ߤ ሺ1 െ ⁄ሻߩ ሻଶ

ଶߪ2 ሺ1 െ ⁄ଶሻߩ
െ
ܶ െ 1
2

ଶሻߪሺ݃݋݈

െ෍ቆ
ሺݕ௧ െ ߤ െ ௧ିଵሻଶݕߩ

ଶߪ2
ቇ

்

௧ୀଶ

																																																																					ሺ36ሻ 

 

Here ߪଶ is the variance of εt. The log-likelihood is written as a function of the 

unknown parameters of the model, ܮሺߤ, ,ଶߪ  ሻ. The log-likelihood ratio test (LR3) isߩ

ଷܴܮ ൌ െ2ሺܮ଴ െ ଵሻܮ ൌ െ2൫ܮሺ0, 1, 0ሻ െ ,ߤሺ̂ܮ ,ොଶߪ 	ሺ37ሻ																								ොሻ൯.ߩ

 

Here hats denote maximum-likelihood values, L0 and L1 are the maximum 

log-likelihoods for the null and alternative hypotheses, and the test statistic has an 

asymptotic ݔଷ
ଶ distribution. One disadvantage of the BK test is that models cannot be 

easily compared if they are all accepted or rejected. The AG test, which we discussed 

before, compares the log-likelihoods between models and solves this problem. 

 

3. Data 

 

3.1 Option data 
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We investigate the Dow Jones Industrial Average (DJIA) 30 Index stocks6 for 10 

years from 1st January 2003 to 31st December 2012. The option data are obtained 

from Ivy DB OptionMetrics, which includes price information for all U.S. listed 

equity options, based on daily closing quotes at the CBOE. 

 

Although the components of the Dow Jones 30 index have changed many times in its 

history, we simply use the constituent stocks at the end of our sample period (24th 

September 2012 is the date of the last change). A detailed list of the component stocks 

of the DJIA is shown in Table 1. 

 

The OptionMetrcis database also includes information about end-of-day security 

prices and zero-coupon interest rate curves. The security price file provides the 

closing price for each security on each day from CRSP. 

 

3.2 Option prices 

 

In terms of filtering option price records, we follow the criteria of Carr and Wu (2003, 

2009 and 2010) and Huang and Wu (2004). We delete an option record when the bid 

price is zero or negative. We also delete an option record when the bid price is greater 

than the ask price. As do Carr and Wu (2009), we eliminate all the options which have 

maturity equal to or more than one year. Following Carr and Wu (2003), Huang and 

Wu (2004), Shackleton et al. (2010) and Taylor et al. (2010), we delete all data for 

options with maturity equal to or less than seven calendar or five business days. 

 

                                                              
6 To date, complete results are available for seventeen stocks. Further results will be included later. 
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All the equity options are American. OptionMetrics provides implied volatilities, 

calculated from binomial trees which incorporate dividends and permit early exercise. 

We use equivalent European option prices defined by assuming the European and 

American implied volatilities are equal. This method assumes the early exercise 

premium can be obtained from constant volatility pricing models. The assumption is 

particularly reasonable for out-of-the-money options which have small early exercise 

premia. 

 

European call and put prices for the same strike and maturity theoretically contain the 

same information. Either the call option or the put option will be out-of-the-money 

(OTM), or under rare circumstances both are at-the-money (ATM). Options are ATM 

when the strike price equals the stock price (S=K), calls are OTM when S<K and puts 

are OTM when S>K; they are nearest-the-money if |ܵ െ  is nearer zero than for all |ܭ

other contemporaneous strikes. We choose to use the information given by the prices 

of OTM and ATM options only, because in-the-money (ITM) options are less liquid 

and have higher early exercise premia. We use put-call parity to obtain equivalent 

European call prices from the European OTM put prices. 

 

3.3 Interest rates 

 

We follow Taylor et al. (2010) to get the interest rate corresponding to each option’s 

expiry by linear interpolation of the two closest zero-coupon rates supplied by Ivy 

DB. 

 

3.4 IBM example 
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We use IBM to illustrate our data and results. A total of 109,111 option prices are 

investigated in our sample period for IBM stock. The average number of option prices 

used per day is 44, consisting of 19 OTM calls and 25 OTM puts. Table 2 presents the 

quantity, moneyness and maturity of the option contracts used in this paper. 

 

3.5 Futures prices 

 

We calculate synthetic futures prices, which have the same expiry dates as the options, 

as the future value of the current spot price minus the present value of all the 

dividends expected during the life of the futures contract until the option expiry time T, 

i.e. 

ܨ ൌ ݁௥்൫ܵ െ ܸܲሺ݀݅ݏ݀݊݁݀݅ݒሻ൯																																											ሺ38ሻ 

 

3.6 High-frequency stock prices 

 

We use the transaction prices of DJIA 30 Index stocks for ten years during the period 

between 1st January 1998 and 31st December 2012. The data are obtained from 

pricedata.com. The prices provided are the last prices in one-minute intervals. After an 

inspection of the high-frequency data, we find a number of problematic days which do 

not have complete trading records. We set the price equal to that for the previous 

minute when there is a missing record, and we delete a day when there are more than 

40 consecutive missing prices. The days deleted are usually close to holidays such as 

New Year’s Day, Easter, Independence Day, Thanksgiving Day and Christmas. 
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Between 2003 and 2012, 17 days are deleted because of missing high-frequency 

prices and these days usually only have prices for half a day. There are also 8 days 

with unsatisfactory option price data. All 25 days are deleted from the high-frequency 

and option files leaving a sample of 2488 days for each firm for the ten-year period 

ending on 31st December 2012. 

 

The stocks are traded for six-and-a-half-hours, from 9:30 EST to 16:00 EST. We 

calculate realized variances from 5-minute returns because Bandi and Russell (2006) 

state that the 5-minute frequency provides a satisfactory trade-off between 

maximizing the accuracy of volatility estimates and minimizing the bias from 

microstructure effects. As usual, returns are changes in log prices. We have 77 

5-minute intraday returns for each day after deleting the data in the first five minutes 

to avoid any opening effects. The realized variance for day t is the sum of the squares 

of the 5-minute returns rt,i: 

ܴ ௧ܸ ൌ෍ݎ௧,௜
ଶ

଻଻

௜ୀଵ

.																																																										ሺ39ሻ 

 

However, this calculation of realized variance is downward biased as a measurement 

of close-to-close volatility over a 24-hour period. This is because we only include the 

information during the trading period when we calculate the realized variance for a 

day, so the variation overnight (from close-to-open) is excluded. We thus need to scale 

the realized variance up. We multiply forecasts from the HAR-RV model by a scaling 

factor. The denominator of the scaling factor is the sum of the squares of the 5-minute 

returns representing the open market period, while the numerator of the scaling factor 

is the sum of the squares of the daily returns representing open and closed market 
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periods. We use a rolling window for the scaling factor, hence if we forecast the 

realized variance on day t, then we use the information about returns up to and 

including day t to calculate 

ܴ෢ܸ௧,௧ା௛ ቆ
∑ ௧ଶݎ
௧
௜ୀଵ

∑ ∑ ௧,௝ݎ
ଶ଻଻

௝ୀଵ
௧
௜ୀଵ

ቇ. 

 

This quantity replaces ܴ෢ܸ௧,௧ା௛ in (18) when the high-frequency, lognormal densities 

are evaluated. 

 

4. Empirical results 

 

4.1 Heston risk-neutral parameters 

 

Table 3 shows the summary statistics for risk-neutral parameters calibrated for IBM 

and across all stocks for each day in our sample period. The risk-neutral parameters 

minimize the mean squared error (MSE) of option prices on each day. 

 

For IBM, our median estimate of the stochastic variance ߠ is 0.3457, equivalent to 

an annualized volatility level of 58.80%. The mean estimate of the rate of reversion ߢ 

is 1.6861, for which the half-life parameter of the variance process is then about 5 

months. The median estimate of the volatility of volatility parameter ߪ  which 

controls the kurtosis of returns is 0.8617. Also the median estimate of the correlation 

 .is -0.6652, consistent with estimates in the literature ߩ

 

4.2 Examples of density forecasts 
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The one-day ahead Heston, lognormal and HAR densities for IBM calculated on 

January 2nd 2003 are shown in Figure 1. The Heston density is negatively skewed 

while the lognormal density is slightly positively skewed. The HAR density is seen to 

have less variance than the Heston and the lognormal densities. The one-month ahead 

Heston, lognormal and HAR densities for IBM calculated on January 2nd 2003 and 

shown in Figure 2 display similar properties. 

 

4.3 Examples of cumulative probabilities and nonparametric transformations 

 

The one-day ahead risk-neutral densities give the cumulative distribution functions 

FQ,t(x) for the next stock price pt+1, and the observed risk-neutral probabilities 

ut+1=FQ,t(pt+1) are not consistent with uniform probabilities, as expected. The sample 

cumulative probabilities ܥሚሺݑሻ are calculated using (33), and the deviations between 

the sample c.d.f. and a uniform c.d.f., namely ܥሚሺݑሻ െ  are plotted in Figure 3 for ,ݑ

IBM, for one-day-ahead forecasts obtained from the Heston model. We can observe 

from the figure that there are few observations u close to either zero or one; only 7.3% 

of the variables u are below 0.1 and only 5.1% of them are above 0.9. The KS test 

statistic is the maximum value of |ܥሚሺݑሻ െ  which is equal to 7.1%, hence the null ,|ݑ

hypothesis of a uniform distribution is rejected at the 0.01% significance level. The 

shape of the curve may be explained by the fact that the historical volatility is lower 

than the risk-neutral volatility, hence the risk-neutral probabilities of large price 

changes exceed the real-world probabilities. The corresponding plot for IBM for 

one-day-ahead forecasts obtained from Black-Scholes lognormal densities is shown in 

Figure 4 and is similar. 
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The nonparametric transformation of the probabilities ut+1 used in the calculation of 

the real-world density is calculated from (27). The calibration densities ܿ̂ሺݑሻ, for 

one-day ahead Heston and Black-Scholes lognormal forecasts are shown in Figure 5 

and 6; these densities use the values of u for all 10 years from 2003 to 2012. The 

purpose of the calibration is to create real-world densities which have uniformly 

distributed observed probabilities ut+1. The differences ܥሚሺݑሻ െ  after applying the ݑ

nonparametric calibration method for one-day ahead forecasts from Heston and 

Black-Scholes lognormal densities are shown in Figure 3 and 4. The differences are 

much nearer zero compared to the risk-neutral densities. Comparable figures and 

results are obtained for longer horizon density forecasts. 

 

4.4 Log-likelihood comparison 

 

Table 4 gives the log-likelihoods for IBM and another sixteen stocks from 2003 to 

2012 under six measures. The density forecasts are made overlapping for four 

horizons, namely one day, one week (5 trading days), two weeks (10) and one month 

(22).7 The log-likelihood of the HAR model is defined as the benchmark level, the 

log-likelihoods of the other five density forecasting methods exceeding the 

benchmark are summarized in the table. 

 

For IBM stock, the lognormal Black-Scholes model gives the highest log-likelihoods 

for all four horizons ranging from one day to one month, for both risk-neutral and 

transformed real-world density. The HAR model and the Heston model give similar 

                                                              
7 For a horizon h, we set T=h/252 to calculate option implied densities. 
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forecasts for all four horizons both before and after applying transformations. The 

log-likelihoods for nonparametric transformation are always higher than those under 

risk-neutral measure for all methods and horizons, and the differences range from 

66.3 to 192.8. 

 

4.5 Diagnostic tests 

 

The KS statistic tests if the densities are correctly specified under the i.i.d. assumption. 

Table 5 summarizes the p-values for the KS test for six density forecasting methods 

for four horizons for IBM. Since the null hypothesis is rejected at α significance level 

when p<α, All the risk-neutral measure p-values reject the null hypothesis at 5% 

significance level, which might be due to the mis-specified risk-neutral densities that 

are conditionally normal. All nonparametric transformations have satisfactory 

p-values greater than 50%. 

 

The BK test LR3 statistic tests the null hypothesis that the variables yi=Φ
-1(ui) are i.i.d. 

and follow a standard normal distribution, against the alternative hypothesis of a 

stationary, Gaussian, AR(1) process with no restrictions on the mean, variance and 

autoregressive parameters. Table 6 presents the BK test LR3 statistic, and the 

estimates of the variance and AR parameters for six density forecasting methods and 

four horizons for IBM. 

 

The MLEs of the autoregressive parameters are between -0.01 and 0.01 for one-day 

horizon, hence there is no significant evidence of time-series dependence. However, 

the MLEs for one-week horizon range between -0.04 and -0.08, thus five of them 
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reject the null hypothesis that the autoregressive parameter is 0 at 5% significance 

level. The longer two-weeks and one-month horizons also provide no evidence of 

dependent observations. The MLEs of the variance parameter are near one for 

correctly specified densities. The low estimates for one-day lognormal and Heston 

forecasts under Q measure might be explained by the fact that the risk-neutral 

standard deviations on average are higher than the historical standard deviations. 

 

The LR3 test statistic is significant at 5% level when it exceeds 7.81. Table 6 indicates 

that the null hypothesis is rejected for all risk-neutral forecasts and one-week forecasts. 

The null hypothesis is accepted for all real-world forecasts for one day, two-weeks 

and one-month horizons. The significant values of LR3 test statistic might be 

attributed to the negative estimates of the AR parameter for one-week horizon, or the 

mis-specified risk-neutral density which is conditionally normal. 

 

For one day horizon, two of the AG test statistics are insignificant at 5% level when 

the best method, nonparametric lognormal, is compared with the five alternatives, the 

AG test statistics equal -0.37 and 1.27 for tests against nonparametric HAR and 

nonparametric Heston methods. The AG test has similar test values and the same 

conclusion when the Newey-West adjustment is made to the estimated variance. The 

insignificant values become -0.33 and 0.99 when twenty autocorrelations are 

considered. The AG test results show that the best method for one week horizon is 

significantly better than two of the remaining five methods at the 5% level, and the 

best method is statistically better than one method at the 5% level for two weeks 

horizon, while the best method is statistically indifferent to the other methods at the 

longest, one month horizon, when the Newey-West adjustment is employed. 
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5. Conclusions 

 

We compare density forecasts for the prices of Dow Jones 30 stocks, obtained from 

5-minute high-frequency returns and daily option prices by using Heston, lognormal 

Black-Scholes, lognormal HAR-RV and transformed densities. Our comparison 

criterion is the log-likelihood of observed stock prices. For the sixty-eight 

combinations from seventeen stocks for four horizons, the lognormal Black-Scholes 

model gives the highest log-likelihoods for fifty-eight combinations. The HAR-RV 

model and the Heston model have similar forecast accuracy for different horizons, 

either before or after applying a transformation which enhances the densities. 

 

Jiang and Tian (2005) suggest that daily option prices are more informative than daily 

and intraday index returns when forecasting the volatility of the S&P 500 index over 

horizons from one to six months. Shackleton et al. (2010) similarly imply that option 

prices are more informative when based on mid-term forecast horizons due to the 

forward-looking nature of option prices. They only use option prices for the contracts 

with maturities of more than one week, hence the short horizons of one day and one 

week density forecasts are extrapolations which are not backed by active trading. 

They state that the historical density is best for the one day horizon as we can forecast 

the volatility for tomorrow accurately by calculating the realized variance from recent 

high-frequency returns. 

 

Most density research only focuses on either risk-neutral densities or ex post 

real-world density forecasts for horizons matching option expiry dates, while we 

generate ex ante real-world densities for different forecast horizons. We use a 
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nonparametric transformation to transform the risk-neutral density into real-world 

density. The log-likelihoods for the nonparametric transformation are always higher 

than those under the risk-neutral measure for all methods and horizons. The 

nonparametric transformation also gives better diagnostic test results. Hence central 

banks, risk managers and other decision takers should not merely look at risk-neutral 

densities, but should also obtain more accurate predictions by using risk 

transformations applied to risk-neutral densities. The relatively unsatisfactory 

performance of the Heston model for individual firms might be attributed to the 

illiquidity of the OTM options. Compared to the index, the individual firm stocks 

options have fewer strikes that are traded. 
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Appendix 1. Assumptions about prices, dividends and options 

Stock prices jump when dividends are assigned. We apply the Heston dynamics to 

futures prices which do not jump. We also need to assume all synthetic futures prices 

have the same dynamics. We assume futures and options contracts expire at time T1, 

and there is a dividend at time τ1 between time 0 and time T1. The second expiry time 

for futures and options is T2 and there is another dividend at τ2 between time T1 and T2. 

We can use the same dynamics for all futures from simple dividend assumptions; this 

is easy for continuous dividends but harder for discrete dividends. We denote the 

futures price at t for delivery at T to be Ft,T. Our discussion below refers to dividend 

constants c1, c2, …, which do not need to be calculated. 

 

We assume, at time t before time τi, that the expected dividends are 

௜ሿ߬	ݐܽ	݀݊݁݀݅ݒ௧ሾ݀݅ܧ ൌ ܿଵ݁௥ሺఛభି௧ሻܵ௧																																					߬ ൌ 1, ݐ ൏ ߬ଵ 

ൌ ܿଶሺ1 െ ܿଵሻ݁௥
ሺఛమି௧ሻܵ௧																					߬ ൌ 2, ݐ ൏ ߬ଶ 

ൌ ܿଷሺ1 െ ܿଵሻሺ1 െ ܿଶሻ݁௥
ሺఛయି௧ሻܵ௧					߬ ൌ 3, ݐ ൏ ߬ଷ 

etc. We assume futures prices are set by no-arbitrage conditions, so 

்,௧ܨ ൌ ݁௥ሺ்ି௧ሻሾܵ௧ െ ܸܲሺ݁݀݁ݐܿ݁݌ݔ	ݏ݀݊݁݀݅ݒ݅݀	݉݋ݎ݂	ݐ	݋ݐ	ܶሻሿ. 

 

Then for the first contract 

,௧ܨ భ் ൌ ݁௥ሺ భ்ି௧ሻൣܵ௧ െ ݁ି௥ሺఛభି௧ሻܿଵ݁௥ሺఛభି௧ሻܵ௧൧ 

ൌ ሺ1 െ ܿଵሻ݁௥
ሺ భ்ି௧ሻܵ௧																																																		0 ൑ ݐ ൏ ߬ଵ, 

ൌ ݁௥ሺ భ்ି௧ሻܵ௧																																																																߬ଵ ൑ ݐ ൑ ଵܶ. 
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Then we have 

݈݊൫ܨ௧, భ் ܵ௧⁄ ൯ ൌ ݈݊ሺ1 െ ܿଵሻ ൅ ሺݎ ଵܶ െ 0																									ሻݐ ൑ ݐ ൏ ߬ଵ, 

ൌ ሺݎ ଵܶ െ ߬ଵ																																																ሻݐ ൑ ݐ ൑ ଵܶ. 

Thus 

݀൫݈݊ܨ௧, భ்൯ ൌ ݀ሺ݈݊ܵ௧ሻ െ ݐ																																													ݐ݀ݎ ് ߬ଵ 

Also St jumps down by ܿଵܵఛభ at time t=τ1, but ܨ௧, భ் does not jump at t=τ1. 

 

Similarly, for the second contract 

,௧ܨ మ் ൌ ݁௥ሺ మ்ି௧ሻൣܵ௧ െ ݁ି௥ሺఛభି௧ሻܿଵ݁௥ሺఛభି௧ሻܵ௧ െ ݁ି௥ሺఛమି௧ሻܿଶሺ1 െ ܿଵሻ݁௥ሺఛమି௧ሻܵ௧൧ 

ൌ ݁௥ሺ మ்ି௧ሻሺ1 െ ܿଵሻሺ1 െ ܿଶሻܵ௧																																																																0 ൑ ݐ ൏ ߬ଵ, 

ൌ ݁௥ሺ మ்ି௧ሻሺ1 െ ܿଶሻܵ௧																																																																														߬ଵ ൑ ݐ ൏ ߬ଶ, 

ൌ ݁௥ሺ మ்ି௧ሻܵ௧																																																																																													߬ଶ ൑ ݐ ൑ ଶܶ. 

 

Hence we have 

݀൫݈݊ܨ௧, మ்൯ ൌ ݀ሺ݈݊ܵ௧ሻ െ ݐ																																			ݐ݀ݎ ് ߬ଵ, ߬ଶ, 

ൌ ݀൫݈݊ܨ௧, భ்൯																																								0 ൑ ݐ ൑ ଵܶ. 

And we also have 

,௧ܨ మ்
,௧ܨ భ்

ൌ ݁௥ሺ మ்ି భ்ሻሺ1 െ ܿଶሻ																											0 ൑ ݐ ൑ ଵܶ. 

 

We estimate the Heston parameters for the prices of European options which expire at 

T1, T2, …, TN, and strike prices are available as Ki,j, with 1≤i≤N and 1≤j≤ni. At time 0 

we have Black-Scholes implied volatilities σi,j, these give market prices from the 

standard formula for options on futures, 

ܿ௜,௝ ൌ ܿ஻൫ܨ଴,்೔, ௜ܶ , ,௜,௝ܭ ,ݎ  .௜,௝൯ߪ
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Here we have 

଴,்೔ܨ ൌ ݁௥்೔ሾܵ଴ െ ܸܲሺ݁݀݁ݐܿ݁݌ݔ	ݏ݀݊݁݀݅ݒ݅݀	݉݋ݎ݂	݋ݎ݁ݖ	݋ݐ	 ௜ܶሿ 

and S0 is the spot price. 

 

Our target is to estimate the Heston parameters θ as: 

෠ߠ ൌ ݊݅݉݃ݎܽ
ఏ

෍෍ൣܿ௜௝ െ ܿு௘௦௧௢௡൫ܨ଴,்೔, ௜ܶ , ,௜௝ܭ ,ݎ ൯൧ߠ
ଶ

௝௜

 

 

At time 0 and for any future time τ, we can obtain the density of ܵఛ ൌ  ఛ,ఛ byܨ

evaluating the Heston-density with initial price ܨ଴,ఛ and parameters ߠ෠. 
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Appendix 2. Tables and Figures 

Table 1 

List of Dow Jones 30 constituent stocks as at 24th September 2012. 

Number Company Exchange Symbol Industry Date added 

1 3M NYSE MMM Conglomerate 1976/8/9 

2 Alcoa NYSE AA Aluminum 1959/6/1 

3 American Express NYSE AXP Consumer finance 1982/8/30 

4 AT&T NYSE T Telecommunication 1999/11/1 

5 Bank of America NYSE BAC Banking 2008/2/19 

6 Boeing NYSE BA Aerospace and defense 1987/3/12 

7 Caterpillar NYSE CAT Construction and mining equipment 1991/5/6 

8 Chevron Corporation NYSE CVX Oil & gas 2008/2/19 

9 Cisco Systems NASDAQ CSCO Computer networking 2009/6/8 

10 Coca Cola NYSE KO Beverages 1987/3/12 

11 DuPont NYSE DD Chemical industry 1935/11/20 

12 ExxonMobil NYSE XOM Oil & gas 1928/10/1 

13 General Electric NYSE GE Conglomerate 1907/11/7 

14 Hewlett-Packard NYSE HPQ Computers & technology 1997/3/17 

15 The Home Depot NYSE HD Home improvement retailer 1999/11/1 

16 Intel NASDAQ INTC Semiconductors 1999/11/1 

17 IBM NYSE IBM Computers & technology 1979/6/29 

18 Johnson & Johnson NYSE JNJ Pharmaceuticals 1997/3/17 

19 JPMorgan Chase NYSE JPM Banking 1991/5/6 

20 McDonald's NYSE MCD Fast Food 1985/10/30 

21 Merck NYSE MRK Pharmaceuticals 1979/6/29 

22 Microsoft NASDAQ MSFT Software 1999/11/1 

23 Pfizer NYSE PFE Pharmaceuticals 2004/4/8 

24 Procter & Gamble NYSE PG Consumer goods 1932/5/26 

25 Travelers NYSE TRV Insurance 2009/6/8 

26 UnitedHealth Group NYSE UNH Managed health care 2012/9/24 

27 United Technologies Corporation NYSE UTX Conglomerate 1939/3/14 

28 Verizon NYSE VZ Telecommunication 2004/4/8 

29 Wal-Mart NYSE WMT Retail 1997/3/17 

30 Walt Disney NYSE DIS Broadcasting and entertainment 1991/5/6 
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Table 2 

Summary statistics for IBM option data. The information about out-of-the-money 

(OTM) and at-the-money (ATM) options on IBM stock from 2003 to 2012. 

Total Average per day Maximum per day Minimum per day

Calls 47709 19 46 6 

Puts 61402 25 74 5 

Total 109111 44 115 12 

Moneyness/maturity S/K <1 month Between 1 and 6 months >6 months Subtotal 

Deep OTM put >1.05 6462 30100 13596 50158 

(5.92%) (27.59%) (12.46%) (45.97%) 

OTM put 1.01-1.05 2040 5123 1839 9002 

(1.87%) (4.70%) (1.69%) (8.25%) 

At/near the money 0.99-1.01 1049 2641 973 4663 

(0.96%) (2.42%) (0.89%) (4.27%) 

OTM call 0.95-0.99 2278 5733 2330 10341 

(2.09%) (5.25%) (2.14%) (9.48%) 

Deep OTM call <0.95 3168 20393 11386 34947 

(2.90%) (18.69%) (10.44%) (32.03%) 

Subtotal 14997 63990 30124 109111 

(13.74%) (58.65%) (27.61%) (100.00%)
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Table 3 

Summary statistics for risk-neutral calibrated parameters for IBM and across all 

stocks. Estimates are summarized for the risk-neutral dynamics (2). The parameters 

are estimated each day from 2003 to 2012, from the OTM and ATM options, through 

minimizing the MSE of the fitted option prices. We apply the constraint ߢ ൑ 36. 

κ θ σ ρ v0 

IBM 

Mean 1.6861 0.5042 1.2038 -0.6723  0.0653 

Median 0.1661 0.3457 0.8617 -0.6652  0.0444 

Standard deviation 3.6779 0.4201 2.1596 0.1051  0.0726 

Averages across all firms 

Mean 3.0401 0.4037 1.9675 -0.6331  0.1081 

Median 1.1136 0.2308 1.0267 -0.6305  0.0692 

Standard deviation 5.2434 0.3594 5.6694 0.1462  0.1206 
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Table 4 

Log-likelihoods for overlapping forecast. The numbers shown are the log-likelihoods 

of the HAR untransformed density forecasts and the log-likelihoods of the other 

forecasts in excess of the HAR benchmark values. The letter Q defines untransformed 

and risk-neutral densities, while the letter P denotes nonparametric transformation of 

the Q densities defined by (26). The numbers in bold in each row refer to the best 

method with the highest log-likelihood for the selected forecast horizon. 

Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

IBM 

1 day 2487 -4312.5 124.1 33.0  128.5  -9.3  113.2 

1 week 2483 -6419.1 157.3 100.1  217.4  100.9  167.2 

2 weeks 2478 -7222.1 189.3 78.1  270.9  76.1  176.2 

1 month 2466 -8232.5 179.9 77.2  257.6  65.7  151.1 

Alcoa 

1 day 2487 -1616.5 81.3 68.2  117.1  6.9  77.7  

1 week 2483 -3687.9 60.9 77.8  107.6  7.0  82.9  

2 weeks 2478 -4575.0 131.0 108.8  161.8  -5.1  111.1 

1 month 2466 -5693.6 305.0 202.5  332.0  -17.7  239.7 

Boeing 

1 day 2487 -3706.5 168.5 178.7 208.5  119.5 174.6 

1 week 2483 -5644.3 110.8 115.3 150.9  44.4 134.8 

2 weeks 2478 -6439.4 100.4 72.3 119.8  -57.5 109.2 

1 month 2466 -7387.4 158.9 57.3 147.5 -186.9 113.4 

Cisco 

1 day 2487 -1235.1 260.2 185.3  269.8  129.3  242.8 

1 week 2483 -3218.6 161.0 223.4  266.9  92.9  226.9 

2 weeks 2478 -3966.3 109.0 130.3  189.3  -29.9  115.3 

1 month 2466 -4904.4 81.3 68.1  133.3  -181.3  50.0  
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

Disney 

1 day 2487 -1787.1 163.6 166.3  231.4  98.9  200.7 

1 week 2483 -3569.7 69.3  85.0  131.8  -38.9  93.0  

2 weeks 2478 -4368.9 105.3 76.2  191.5  -117.6 118.9 

1 month 2466 -5342.1 169.2 43.7  237.0  -255.5 204.5 

General Electric 

1 day 2487 -2636.3 185.2 -150.7  -8.6  -702.0 -97.3 

1 week 2483 -3330.3 208.8 347.9  385.7  135.2  267.3 

2 weeks 2478 -3910.0 62.0  75.6  109.2  -166.0 -2.3  

1 month 2466 -5220.7 160.3 396.3  453.1  36.2  335.6 

Home Depot 

1 day 2487 -2009.2 78.3 40 98.5 -222.6 -59.9 

1 week 2483 -4014.8 54.2 77.6 110.8 -261.3 -151.3 

2 weeks 2478 -4815.7 72.8 46.9 117.4 -238.3 -162.7 

1 month 2466 -5821.9 92.6 26.2 136.7 -321.8 -221.1 

Hewlett Packard 

1 day 2487 -2395.3 356.2 238.3 401.3 257.6 386.3 

1 week 2483 -4299.4 255.6 193.4 316.8 248.5 311.5 

2 weeks 2478 -5035.9 200 127.8 245.1 180 232.9 

1 month 2466 -6095.3 280.6 136.7 332.6 244.1 302.2 

Intel 

1 day 2487 -2395.3 85.5 7.6 77.2 -1.9 71 

1 week 2483 -4299.4 75.4 65.9 104.8 52.1 91.6 

2 weeks 2478 -5035.9 83.6 26.7 80.3 16 71.8 

1 month 2466 -6101 86.8 -34.2 51.3 5.5 38.7 
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

Johnson & Johnson 

1 day 2487 -2395.3 171.9 62.6  163.7  -58.3  106.1 

1 week 2483 -4299.4 146.5 59.3  174.8  -113.7 46.2  

2 weeks 2478 -5035.9 105.4 -4.5  145.9  -208.4 -31.4 

1 month 2466 -6101.0 104.6 -37.5  112.7  -286.4 -137.6 

JP Morgan Chase 

1 day 2487 -2395.3 101.7 15.1  95.6  5.5  87.6  

1 week 2483 -4299.4 62.5 28.4  93.7  -2.3  61.3  

2 weeks 2478 -5035.9 53.1 9.7  106.6  -50.4  39.8  

1 month 2466 -6101.0 43.5 -33.3  79.5  -112.9 -4.6  

McDonald's 

1 day 2487 -2395.3 135.9 92.7 167.1 57.2 148.5 

1 week 2483 -4299.4 207 429.6 516.1 384.1 453.7 

2 weeks 2478 -5035.9 78.7 -31.7 85.8 -72.6 19.7 

1 month 2466 -6101 153.8 -42.3 121.8 -65.4 58.9 

Merck 

1 day 2487 -2395.3 790.4 235.6  850.8  570.2  751.0 

1 week 2483 -4299.4 553.8 137.1  609.6  353.0  492.6 

2 weeks 2478 -5035.9 582.3 102.2  648.8  459.7  586.7 

1 month 2466 -6101.0 431.9 -20.5  464.6  266.2  404.9 

Pfizer 

1 day 2487 -2395.3 197.6 91.5  222.3  1.5  180.2 

1 week 2483 -4299.4 82.5 57.9  113.1  3.5  71.0  

2 weeks 2478 -5035.9 64.9 30.3  96.2  -33.7  48.3  

1 month 2466 -6101.0 49.1 12.9  101.3  -123.7 13.7  
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

AT&T 

1 day 2487 -2395.3 85.1 74.0  121.9  -597.4  -284.7 

1 week 2483 -4299.4 57.0 59.6  105.7  -754.4  -494.7 

2 weeks 2478 -5035.9 79.0 86.5  139.0  -703.0  -435.1 

1 month 2466 -6101.0 116.6 109.4  171.9  -786.2  -491.3 

Walmart 

1 day 2487 -2395.3 183.2 127.4 213.7 83.6 183.5 

1 week 2483 -4299.4 69.7 56.2  102.0  -25.0  50.7  

2 weeks 2478 -5035.9 40.5 5.4  71.1  -98.0  -7.9  

1 month 2466 -6101.0 29.3 -36.8  48.9  -140.6  -31.5 

American Express 

1 day 2487 -3046.9 271.7 154.4 267.2 53.1 305 

1 week 2483 -4829.3 117.9 89 153.4 -75.1 12.1 

2 weeks 2478 -5608.6 94.9 52.3 144.5 -40.5 10.5 

1 month 2466 -6456.2 92.7 33.7 145.5 -91.9 9.9 
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Table 5 

KS test results for IBM overlapping forecast. The numbers are the p-values of the KS 

test for the null hypothesis that the terms ut are uniformly distributed. The letter Q 

defines risk-neutral densities, while the letter P denotes nonparametric transformation 

of the real-world densities defined by (26). * indicates that the p-values are greater 

than 50%. The null hypothesis is rejected at α significance level when p<α. 

Forecast horizon No. of obs. HAR (%) Lognormal (%) Heston (%)

Q P Q P Q P

1 day 2487 0.42 * 0.00 * 0.00 * 

1 week 2483 0.01 * 0.00 * 0.00 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 * 
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Table 6 

BK test results for IBM overlapping forecast. The null hypothesis that the variables 

yi=Φ
-1(ui) are i.i.d. and follow a standard normal distribution is tested against the 

alternative hypothesis of a stationary, Gaussian, AR(1) process with no restrictions on 

the mean, variance and autoregressive parameters. The numbers are the LR3 test 

statistic, and the estimates of the variance and AR parameters. * suggests that the null 

hypothesis is rejected at 5% significance level when LR3>7.81. 

Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

1 day AR -0.01 -0.01 0.01  0.00  0.01  0.00  

Variance 1.17  0.97  0.79  0.97  0.78  0.97  

LR3 42.19* 1.74  74.23* 1.36  75.42* 1.47  

1 week AR -0.04 -0.07 -0.06  -0.08  -0.05  -0.06 

Variance 1.18  0.96  0.86  0.96  0.84  0.96  

LR3 50.06* 15.07* 44.06* 19.08* 44.69* 11.08* 

2 weeks AR 0.01  0.00  0.01  0.00  0.01  0.01  

Variance 1.11  0.96  0.82  0.96  0.81  0.96  

LR3 30.61* 2.42  67.22* 2.51  56.32* 2.54  

1 month AR 0.01  -0.02 0.01  -0.02  -0.02  -0.01 

Variance 1.12  0.96  0.86  0.96  0.90  0.96  

LR3 44.77* 3.42  62.91* 4.12  23.80* 2.64  
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Figure 1. Heston, lognormal and HAR one-day ahead density forecasts for IBM on January 2nd 2003. 
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Figure 2. Heston, lognormal and HAR one-month ahead density forecasts for IBM on January 2nd 2003. 
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Figure 3. Function ܥሚሺݑሻ െ  .for one-day ahead forecasts from the Heston model and a nonparametric transformation for IBM ݑ
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Figure 4. Function ܥሚሺݑሻ െ  .for one-day ahead forecasts from the Black-Scholes model and a nonparametric transformation for IBM ݑ
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Figure 5. Nonparametric calibration densities ܿ̂ሺݑሻ from one-day ahead Heston forecasts for IBM. 
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Figure 6. Nonparametric calibration densities ܿ̂ሺݑሻ from one-day ahead Black-Scholes lognormal forecasts for IBM. 
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